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The motion of a rigid body about a fixed point in a uniform gravitational ficld is considered. The body is not dynamically symmetric,
but its centre of gravity is on the perpendicular, erected from the fixed point, to a circular section of the inertia ellipsoid. Griok
proved that a rigid body with such mass gcometry may precess regularly about a non-vertical axis. The problem of the stability
of this precession is solved. © 2003 Elsevier Ltd. All rights reserved.

In 1947, Grioli [1] made an unexpected discovery: a rigid body without dynamic symmetry, moving in
a uniform gravitational field, may precess regularly about an axis other than the vertical axis. Until then,
regular precession of a heavy rigid body had been known in the Euler and Lagrange cases, when the
body is dynamically symmetric, and statements were sometimes made in the literature {2, 3] to the effect
that regular precession of a heavy rigid body about a non-vertical axis is impossible.

At the present time, the problem of the existence of regular precession of a rigid body with one fixed
point in a uniform gravitational field has been fully solved. Studies have shown [4-7] that only three
types of regular precession exist: (1) precession of a dynamically symmetric body in the Euler case about
an arbitrary axis of fixed direction passing through the fixed point; (2) regular precession about the
vertical in the Lagrange case; (3) regular precession, discovered by Grioli, of a body that is not
dynamically symmetric, about an axis inclined to the vertical. In all types of regular precession, the centre
of gravity of the body lies on a perpendicular to a circular section of its inertia ellipsoid for the fixed
point. A history of the discovery and of the study of rigid body precession may be found in [8-10].

The problem of the stability of regular Grioli precession has proved to be very complex and, unlike
precession in the classical Euler and Lagrange cases, still awaits a complete solution, though attempts
have been made to investigate it [11-14].

Below we present new results on this topic, a brief summary was published in [15].

1. THE MOTION OF A RIGID BODY IN THE CASE OF
GRIOLI PRECESSION

Consider the motion of a rigid body with one fixed point O in a uniform gravitational field. The weight
of the body is mg and the distance from the centre of gravity to the fixed point is /. Suppose the point
of attachment is chosen is such a way as to satisfy the following conditions (Grioli’s conditions)

x'A/B—sz;,A/A—B, v =0, A>B>C (1.1)

£

where xg, y;, z;, are the coordinates of the centre of gravity G in the system of coordinates Ox’y’z" formed
by the principal axes of inertia of the body for the fixed point, 4, B and C being the corresponding
moments of inertia. Conditions (1.1) mean that the body does not possess dynamic symmetry, and its
centre of gravity lies on a perpendicular, erected from the fixed point, to a circular section of the inertia
ellipsoid (Fig. 1).

Let OXYZ be a fixed system of coordinates whose OZ axis points directly upward, while the system
Oxyz is rigidly attached to the body, its Oy axis coinciding with the principal axis of inertia Oy” of the
body for the point O corresponding to the median moment of inertia B, and its Oz axis passing through
the centre of gravity of the body. The trihedron Oxyz is obtained by rotating the trihedron Ox’y'z" by
an angle o about the Oy’ axis (Fig. 2a), where
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o = arctg-¥ = arctg B;

I
-}
!

TPrikl. Mat. Mekh. Vol. 67, No. 4, pp. 556-572. 2003.

497



498 A. P. Markeyev

Fig. |

In the system of coordinates Oxyz the matrix J of the inertia tensor and the unit vector y of the fixed

vertical axis OZ are written as

Jo 0 -/, Y
J = O ‘],v 0 Y = YZ
_‘I.x: 0 J Y3
J,=J,=B. J. =A-B+C, J_ =-J(A-B)(B-O)

The kinetic and potential energies of the body are given by

T = 12J(p"+q)+ 12,7 —J _pr, T = mgly,

(1.2)

where p, g and r are the projections of the angular velocity vector o of the body on the Ox, Oy and Oz

axes, respectively.
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As generalized coordinates ¢, ¢, ¢; defining the orientation of the trihedron Oxvz relative to the
fixed system of coordinates we take the Euler angles ¢, 6. v, defined in the usual way (Fig. 2b). Then
P = G3Y, +4,08q,. g = 43¥;—§,;8Inq,, 7 = 43Y3+ 4, 3

Y, = sing,sing,. Y» = sing,cosq,, Y; = c08q, (1.3)

As genceralized momenta we take the dimensionless quantities p; (7 = 1, 2, 3), defined by the equalitics

P, = Kl;ng i=1273 (1.4)

The kinetic energy 7 is evaluated by formulac (1.2) and (1.3), and » is defined by the relations

: b o
= gl b= b= J0-6,)6,-8). by=1-0,+8,
(A=B+ )b+ 1 2

where 0, = B/4 and 6. = (/4 arc the dimensionless parameters of the problem. The domain of their

admissible values in the 6, 6, planc (0 < 6, <8, < 1.9, + 6. > 1) is a right-angled trianglc with vertices
Pi('2, 1), Pi(1, 1), Py(1, 0).

If we now additionally take as independent variable T = n(r + 1,). where 1, is an arbitrary constant,

then, taking Eqs (1.2)~(1.4) into consideration, we obtain the following expression for the Hamiltonian

kok ok
H = —-—l——w—' Z ak]k,k,pll[’2>p3 +IT* (1.5)
20,0.507qy ¢ ipivn=0

Aoy = 6,,(6,7sin2q2 + bzcoszqz) - bfcoszq1 coszq2 +28,b,sing,sing,cosq,

2 - .
ay = —2(b\sing,cosqg,cosg, + 8,b,cosq, sing,)sing,
2.2 . .
dyy = —2(8,.c08¢q, + bjsin" g, co8q, + 0,b,sing,sing,)
22 2
Ay = (B, + bjcos g,)sin" g,

agy = 2b,lsinqlcosq]sinq2
1.2
Agpn = B+ bysin g,
M 2
[1* = ,/b] + b5cosq,

The following solution of the equations of motion corresponds to Grioli precession

g, = fi(1) = —g+'c—arctg(bsin‘r), P = &(1) = by(1 -bcosT) (1.6)
bcost bsint
q, = fo(1) = arccos ———, p; = 8,(T) = f(l +8,-bb,cost) (1.7)
N7+ 1 N1+ b7sin'1T
0,
9 = f3(0). py = ——— (1.8)
byAb" + 1

where
cgt

A/b2+l'

fimn) = q3(0)+mn, m=20,1, ..

it kn<i<(k+)m

F4(T) = q5(0) + (2k + l)g—arclg
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In the Grioli precession, the axis of the body on which the centre of gravity is situated is an axis about
which the body itsclf revolves, and the axis of precession is inclined to the vertical at an angle y = arctgh
(Fig. 3). The axcs of the moving and fixed axoids are at right angles to one another. The magnitudes
of the angular velocity vectors of the body’s rotation about itself @, and its precession o, are the same,
both equalling #. The centre of gravity of the body moves in a circle whose centre lies on the axis of
precession in a plane perpendicular to that axis. The motion of the body is periodic: in a time equal to
the period 2x/n the body returns to its initial orientation in absolute space, the angular velocity vector
then taking its initial value.

Figurc 4 illustrates the dependence of the angle y on the body’s moments of inertia. The curve on
which y = w/4 (part of a hyperbola) is shown as a dashed curve. It intersects the boundary PPy at the
point P(*/s, /), and the vertical straight line 6, = 1 is tangent to it at the point P;. In the domain y <
/4 the angle of rotation ¢ of the body about itself increases monotonically (f; > 0), but in the domain
¥ > 1/4 the quantity £, may vanish and the angle ¢ is not monotonic. Figure 5 shows the trajectories
of solution (1.6)-(1.8) corresponding to Grioli precession for different values of the inertia parameters
of the body in the 8, ¢ planc.

2. FORMULATION OF THE STABILITY PROBLEM. DERIVATION OF
THE EQUATIONS OF PERTURBED MOTION
The coordinate ¢; is cyclic. Replacing the momentum ps in the Hamiltonian (1.5) by its constant value
from the second expression (1.8), we obtain the Hamiltonian H(q,. ¢», p,. p>; 85, 6,) of the reduced
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system with two degrees of freedom. This system admits of a solution that is a 2n-periodic function of
1. given by Eqs (1.6) and (1.7).
We introduce perturbations Q; and 7, defining them, as usual, by

g, = f(O+Q, p=g(D)+P, i=12 (2.1)

Let Y(1) be the matrix of fundamental solutions of the system of equations linearized relative to Q;,
P (Y(0) = E. where Eis the 4 x 4 identity matrix). It is found as a rule by numerical integration. The
characteristic equation of the matrix Y(2r) is reciprocal

p4 fu]p}+azpz—alp+ 1 =0 (2.2)

where @, is the trace of the matrix Y(2n) and a5 is the sum of all its 2 x 2 principal minors.

Since the system of equations of motion with Hamiltonian H(g,. g~ py, p»: 6,. 8,) is autonomous, the
characteristic cquation (2.2) has a root cqual to 1. But since it is reciprocal, this root is multiple, of
multiplicity at lcast two. Therefore. the cocfficients of Eq. (2.2) satisfy the equation a; = 2(a; - 1) and
it may be written in the form

(p-1)(p°~2ap+1) =0, a=a/2-1 (2.3)
The periodic motion (1.6), (1.7) is not isolated. Tt belongs to a family of periodic motions
g, = F(Q)Th), p, = G(QIMT, h), T=nt+1, (T,=nt,) (2.4)

where £ is the constant of the integral H = /i = const. In the unperturbed motion (1.6), (1.7) h =
hy = (8, + 1)/2. where Q(hy) = 1. dQ)idhy £ 0.

The equations of motion linearized with respect to Q, and P; admit of two types of solution, obtained
by differentiating the functions g; and p; of the family (2.4) with respect to the arbitrary constant 7, and
h. Solutions of the first type, dF, /07, dG,/dT, (i = 1.2), are 2a-periodic functions of 1. (By Floquet’s
theory of lincar differential cquations with periodic cocfficients, this also implies the cxistence of the
root p = 1 of the characteristic equation (2.2).) Solutions of the sccond type, dF;/0h, dG;/0h (i = 1, 2),
have the structure vi(1) + 1u,(1) (7 = 1. 2), where v;(1) and p,(1) are 2n-periodic functions of 1. By
Floquet's theory. the presence of the term Ty (1) implies that the matrix Y(2r) is not diagonalizable.
Conscquently [16], the periodic motion (1.6), (1.7) is unstable in the first approximation in Lyapunov’s
sense.

It will be unstable in Lyapunov’s sense in the non-linear problem also. Indecd, let

ho=h* O0<|h*—hy <1

To this value of /1 there corresponds a periodic motion ¢, p;” of the family (2.4). We will take this motion
as the perturbed motion. Since (/%) # Q(hy). it follows that as time passes the points with coordinates
g 1), p1) and g7 (1), p; (1) in the phase space gy, ¢a, pi. p> will retreat to a finite distance from one
another, howcever close their initial positions ¢,(0). p(0) and ¢7 (0), p;(0). This implics instability in
Lyapunov’s sense.

Let us consider the orbital stability of the periodic motion (1.6), (1.7), that is, look for an answer to
the following question: will the trajectories of perturbed motions remain for all T in a small neighbourhood
of the trajectory of unperturbed motion if their initial points arc sufficiently close together?

An algorithm was worked out in [17] to construct equations of perturbed motion in the problem of
the orbital stability of periodic motions. Following the approach described in [17], we shall replace the
four perturbations of the coordinates and momenta Q. P; (i = 1, 2) defined by (2.1) by three quantitics
-, ny and 0, characterizing the deviation of the perturbed trajectories from the trajectory of unperturbed
periodic motion (1.6). (1.7). To that end. we transform variables in the system with Hamiltonian H(g,,
- P P2t 6, 0,). applying a transformation that is linear in &, 1, and 0,

4192 P P2 = & €Ny My
as defined by the formulac
g = f&) +a, (ENEy+ap(Em, +a;(8,)n;,
P = g8 +a;,, ((EDNE +a; . (E My +a,,,3(Emy i = 1,2

_—
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where f(1), g(t) (i = 1. 2) define the unperturbed periodic motion (1.6), (1.7). The coefficients a;; are
2n-periodic functions of &,. They are chosen in such a way that, in the new variables, the periodic motion
we are investigating may bc cxpressed by the equalities

&1(1) = ‘E+E_,l(0), n = &2 =n, =0 (2.6)

and the transformation of the variables (2.5) is canonical and univalent. It has been shown [17] that
the coefficients a;(§,) must be evaluated from the formulae

1 ' ' 2 2 '
a, = K[€1f1 —eyfr-2(ejcs—e4cqt €165~ €3¢4)8,]

e3 1 ' [ '
a, = A a3 = Z(Csfl_zczlfl_e(;gz)

1 ! ' 22 '
a, = Z[esfl—elf2+2(e165—e4c6+clc5—C3C4)gl]

. | (2.7)
ap = j a3 = Z(2C6f'l_c5f'2+eﬁg'l)
1 ' ' [} C3 1 ] 1 [}
ay = <(2¢,f,+e,g +esgy), ayp = =, ay = (- fr+058+2¢68))
A A A
_ 1 ) ' ' [} C2 1 1 v '
ay = Z(— 2e,fi—e.81—€,8y), agp = A 43 = Z(fl —2c481—C583)
where the prime denotes differentiation with respect to &), and we have put
A= cif i -y f +e38 - e,8)
€, = C363—2¢,Cs5, €5 = (3C5~2C,Cq, €3 = CoC5—2C4C, (2.8)

2 2 2
ey = c3—4cicy, €5 = c3-4cicy, €4 = C5—4C4Cq

The transformation of the variables (2.5) involves six arbitrary constant parameters cy, ¢a, ... , Cg.
They must be chosen in such a way that the quantity A does not vanish for 0 = &1 < 2n.

The Hamiltonian of the perturbed motion T(§,. &, My, My) is obtained from the Hamiltonian
H(q\, g p1, p2; 85, 0,) by replacing the variables gy, ¢». py, p> by their expressions in terms of &, &,
N, Nh according to formulae (2.5). The function T can be expanded in series in powers of n;, & and
n

D =T+ +T,+ ... (2.9)

where the constant /, has been dropped. and Ty is a form of degree & in ;| '2 €, Mo,

Fy =M+ 9582 8)) Ty = W€ N EM + 03(85, M0, &)

N (2.10)
Ly = x(Emy+ (8 My EMy + 04(8 My &)

Here x(&,) is a 2n-periodic function of &), and ¢,, and v, are forms of degree m in &, and n, whose
coefficients are 2n-periodic functions of &.

Orbital stability of the unperturbed periodic motion implies stability of the system with Hamiltonian
(2.9) with respect to perturbations of 1y, &> and na.

3. ORBITAL STABILITY IN THE FIRST APPROXIMATION
Let X(&,) be the matrix of fundamental solutions (X(0) = E, where E is the 2 x 2 identity matrix) of
the linear system whose cocfficients are 2n-periodic functions of the independent variable &,

dgl:?i’f @=-a_(p2 (3.1)
dg, dn,’ dg, 08, N
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Fig. 6

where (&, 02, &) is the quadratic part (with respect to &, and n,) of the function I, of (2.10). The
characteristic equation of the matrix X(2m) is

pi=2ap+1 =0, a= Y% (x,(2%) + xp(27)) (3.2)

The coefficient ¢ may also be evaluated using the second equality of (2.3).

If |a| > 1, Eq. (3.2) has one root, of absolute value greater than 1. There is parametric resonance,
and, by Lyapunov’s theorem on stability in the first approximation [16], the Grioli precession will be
orbitally unstable.

The values of the parameters 6, 8, for which |a| = 1 define the boundaries of the parametric reson-
ance domains (PRDs).

If |a| < 1, the precession will be orbitally stable in the first approximation. In that case, the roots
of Eq. (3.2) will be complex conjugates and their absolute value will both be equal to 1: p; = exp(i2nd),
p> = exp(-i2mA), where A is a real quantity defined by the equation

cos2mh = a (3.3)

Analytical and numerical investigations have shown that only two PRDs exist — the hatched domains
in Fig. 6. They emanate from the points P4(\5/3, V3/3) and Po(2N 5/5, 2V 5/5) on the segment PiP5. In
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small neighbourhoods of those points, when 6, = 6, + 7.0 < & < 1 (that is, when the rigid body differs
only slightly from a dynamically symmetric body oblate along the axis of symmetry Ox’), analytical
expressions have been obtained for the boundaries of the PRDs.

The left boundary of the domain emanating from the point Py ends at the point P5(0.74957, (0.25043)
of the segment PP, and the right boundary ends at the point Pg(0.75652, .24348). For small values
of €, the curve P, Ps is defined by the cquation

ﬁ 1 2
= L2y (267-73./3 278042./3 - 141 267 0
6, = 5+ 555267 73./3)¢ +1944000( 8042./3 et + 0’y =
= 0.5774 +0.2603¢” + 0.1751¢" + O(e°) (3.4)

and the curve PyP, by the equation

0, = ﬁ+——(267 733" +

35423
T30 ]944000(45 5423 +1147983)" + 0(e°) =

= 0.5774 + 0.2603e" + 0.9946¢ " + O(c°) (3.5)

Both boundarics of the PRD ¢cmanating from the point P; tend, as 8. — 0, to the corner point P; of
the domain of admissible parameter values. Near the point P, the boundary curves are defined by the
cquations

6, = 2J3+ L 405 - 373./5)¢ ¢_ 3050 - 1310./5¢* + O(e") =

1000
= 0.8944 - 0.4291¢” 7 0.1374¢” + O(e") (3.6)

where the upper and lower signs relate to the left and right boundaries. respectively.

4. NON-LINEAR ANALYSIS

If the values of the parameters 8, and 8. do not belong to the PRD, the first approximation is not enough
for a rigorous solution of the problem of the orbital stability of the Grioli precession. The non-lincar
equations of perturbed motion have to be investigated.

4.1. The method of investigation

To solve the problem, formulac (2.5) and (2.7) were first used to apply a canonical transformation of
variables g, p; — &, n; (f = 1, 2) so as to express the solution corresponding to Grioli precession in the
form (2.6). For values of 6, and 6, in the domain g < /4 in Fig. 4, the parameters ¢, occurring in (2.5)
and (2.7) were chosen as ¢ = ¢» = ¢y = ¢; = ¢, = 0.3 = 1. Then the transformation (2.5) becomes

g, = f1(&). g, = fR(§)+§,

gt n, - fany s

P = 81(§1)+ f Py = g2(§|)+n2
1

On the curve ¥ = w/4 and in the domain y > w4 it was assumed that ¢; = ¢> = ¢5 = ¢, = 0,
¢; = —; = 1, and the transformation (2.5) is written in the form

Fi& -+ (L + g0,

HED - g2 = [LED+ ; ;
fit+8

qy

a4, = (fa+g))
g1(§1)+82§b nly f,2 &1 T\z’ pz=gz(§1)+ﬂz

fi+82

Py

In order to solve the problem of orbital stability, after transforming via formulac (4.1) or (4.2) to
the variables ;. &, n; andn,, and obtaining a series representation (2.9) of the Hamiltonian of perturbed
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motion, one must obtain the normal form of the Hamiltonian of perturbed motion and then use the
Arnol’d-Moser theorem [18, 19} and the stability conditions for Hamiltonian systems in the presence
of resonance [20, 21]. The quadratic part of the Hamiltonian (2.9) was normalized by using the algorithms
of [17, 21]; terms of higher degrees (in the present case — of degrees 3 and 4) were normalized by the
Deprit-Hori method [20, 22].

The presence or absence of resonance is important in stability analysis, the most essential resonances
being those of order up to and including four, that is, the cases when the number mA, where A is defined
by Eq. (3.3) and m = 1, 2, 3, 4, is an integer.

Suppose the parameters 6, and 6, lic on the boundary of the stability domain in the linear
approximation. Then |a| = 1. When a = 1 one has first-order resonance (A is an integer), and when
a = -1 onc has second-order resonance (A is half an integer). Let us consider the general case, in which
the matrix X(&)) of fundamental solutions of system (3.1), evaluated at &; = 2m, is not diagonalizable.
Using the canonical transformation

Sonp ey wr, Xy, (4.3)
we can reduce the Hamiltonian (2.9) to the following normal form [21]
H=r+1 Syg + k30x; + kygx,r, + k40x; + kzoxgrl + koorf + 0 (4.4)

where kj; are constants and 6 is either 1 or -1, the actual value being determined during normalization
of the linear system (3.1). The symbol O, in (4.4) (and henceforth) denotes a series beginning with terms
of degree at least 2 in |ry|', x, and y. The coefficients of the series Os in (4.4) are periodic functions
of w\. The period is 2r in first-order resonance and 4n in second-order resonance. If the coefficient k5
of the normal form (4.4) is not zero, or if it is zero but dky, < 0, the periodic motion is orbitally unstable,
but if the cocfficient k3, in the normal form (4.4) is zero but dky, > (), the periodic motion is orbitally
stable [21].

Now suppose the parameters 6, and 6, are in the interior of the stability domain in the first approximation.
Then |a| < 1. Ifu = ~1/>, one has third-order resonance (31 is an integer), and if ¢ = 0 one has fourth-
order resonance (4A is an integer).

We first consider the non-resonant case, in which a # ~'/> and a # 0. Then, by applying the canonical
transformation (4.3), which is 2n-periodic in wy, the Hamiltonian (2.9) may be reduced to the following
normal form [17]

2 2
H =ri+hry+cygri+ e riry+cgpry+ 0s 4.5)

where, from now on. x> = V2r, sin w1, v, = ¥2r> cos w- and ¢; are constant coefficients. If the number
defined by the equality

D = c, M — ¢ h+cy (4.6)

ts not zero, the periodic motion will be orbitally stable {18, 19].
For third-order resonance 3A = &, we have the following normal form of the Hamiltonian of perturbed
motion [17]

H = ry+kry+ 1y [ry(0ssin(3w, - kw)) + Bsgcos (3w, —kw)) + O, (4.7)
where oy, and B3, are constant coefficient. If
2 2
a3+ Py =0 (4.8)
the periodic motion will be orbitally unstable [20].
For fourth-order resonance 4A = k. the normal form of the Hamiltonian of perturbed motion will
be [17]

H=r+hr+ c20rf +ognht c02r§ + r%(on‘wsin(4w2 —kw,) + Bagcos(@w, — kw, ) + O (4.9)

where oy and By, are constant coefficients. If

D] > Joii + Bao (4.10)
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then the periodic motion is orbitally stable [20]. But if the reverse inequality holds, the motion is orbitally
unstable.

Remark. To construct normalizing transformations of the variables and compute the cocfticients of the Hamiltonian

of perturbed motion in normal form, one has to solve certain systems of differential equations [17, 21].

4.2. Resonances
The quantity A is not uniquely defined by Eq. (3.3). The indeterminacy is eliminated (taking into account
the continuity of the characteristic exponents) by considering the limiting case 6, = 6., for which the
linearized equations of perturbed motion have constant coefficients, and & =~/ 1 + 6, is the frequency
of small oscillations in the neighbourhood of the trajectory of unperturbed motion.

In the curvilincar triangle P\PyPs in Fig. 6, A = 2 + (2r) . in the triangle PoP-Pu h = 1 + (2",

and in the quadrilateral PyPPP A = 2 - (2r) " arccos a.
On the curves PP and PP, there is first-order resonance A = 2, and on the boundaries of the PRD
emanating from the point P, sccond-order resonance 24 = 3. In the interior of the stability domains

in the first approximation there are two third-order resonance curves (34 = 5 and 34 = 4) and two
fourth-order resonance curves (44 = 7 and 44 = 3). They begin (see Fig. 6) at the points Py(3/4, 3/4),
Po(1, \"A7/3) and P‘(,(4\’ﬁ,/33. 4N33/33), Py (1, 3/4). respectively. As 8. —> 0 these curves approach the
point P;. ,

Near the straight line 6, = 6.. when 0, = 0, + €7, the resonance curves 4A = 7 and 3X = 5 are defined
by equations

9;, _ i«/ﬁi + (5221 11074 A/3‘3)82 + 0(84) _

33 10890 179685
= 0.6963 +0.1254¢” + O€") (curve 41 = 7) (4.11)
o =3, 4747 o 4407170511151 s o6
b= 47 186368 4741058789376 -
= 0.75 + 0.0255¢% + 0.9296¢" + O€®) (curve 31 = 5) (4.12)

If0,=1-¢.0 < ¢ << | (that is, the rigid body differs slightly from a dynamically symmetric body
prolate along the symmetry axis Oz’), the equations of the resonance curves 34 = 4 and 4% = 5 will be

er:%ﬁ_( 9197 ﬁ+21671) 2“('467489565881ﬁ+76509120239

4 6
32340" " T 10780 134220702000 12782924000)8 +0(e) =

= 0.8819—2.7627¢" - 15.2004¢" + 0(e®) (curve 3A = 4) (4.13)

_ 320401 > 11809141307 &
©T4 4536 216040608

= 0.75 - 4.49768” - 54.6617¢" + O(£°) (curve 4A = 5) (4.14)

0 o) =

4.3. Results
We will now describe the results of analvtical and numerical investigation of the orbital stability of the
Grioli precession for values of the parameters 8, and 0, not in the PRD. These results are illustrated
graphically in Fig. 7.

We will first consider the two aforementioned cases of a body that is nearly dynamically symmetric.

means. This has been done using the MAPLE VII system.
I. The case 8, = 6, + € () < & << 1). In the limit when € = 0, the body is dynamically symmetric and

its mass gcometry (A > B = () corresponds to the segment PP, of the boundary of the domain of
admissible values of the parameters 8, and 6,. For points (8, 8,) not on one of the resonance curves
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emanating from the points Py, Py, Py. P of the segment PP, the Hamiltonian of perturbed motion

has the normal form (4.5). The following expressions may be obtained for the coefficients of the normal
form

0; + 1 0,0, + I
A= o, +O(E), o = 22" 1 0(e")
6, 2(8, + 1)
) . ) (4.15)
1-26, ) 20, - 116;+2 )
cy = " —— + O(g™), Cor = ————;————2‘*0(8 )
0,(0;, +1)./0, + 1 40,(0,+ 1)
The quantity (4.6) will he
26, + 146, - 156, + 100; - 2 >
D = s +0(e) (4.16)
49,(0, + 1)

When ¢ = 0 the number ) vanishes only once in the interval P\P- — at the point P»5(0.56776. 0.56776).
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The interval PP, is divided by the points Pas, Py, Py, Py, P; into six intervals. Suppose the values 6
and 8% (8} < 6;*) correspond to the boundary points of one of these intervals. Then for small €, if

0¥ + f*(£) <8, <B* — fr*(g) (4.17)

where f* and f** arc ccrtain continuous positive functions of € that vanish when € = 0, there will be
no resonances of order up to and including four, and the number D will not vanish. According to the
discussion in Section 4.1, this implies that, if € is sufficiently small and inequality (4.17) holds, the Grioli
precession is orbitally stable. In other words, for small valucs of €, cach of the aforementioned six
subintervals of the interval PP, is adjacent to an orbital stability domain.

We will now consider the resonant cases.

First-order resonance A = 2. On the curves P,P; and PP, defined for small valucs of € Egs (3.4) and
(3.5), respectively, the normal form of the Hamiltonian of perturbed motion may be written as (4.4).
It can be shown that on the curve P,Ps the normal form (4.4) will have & = 1, k3 = 0,

179511837 1849015981 12 13 12 13
k = - = —U.
40 (671088640 5033164800ﬁ)€ +0(e7) = -0.3688e "+ O(e ™)
while on the curve P P, we have 8 = ~1, and
3464297 35449069 10 12 10 12
_ 4 _ = -
kyy = A/12(15728640 47]85920J§)e +0(e') = ~20119¢"+ 0(e?)

Therefore, on both the left and right boundaries of the PRD emanating from the point Py, the Grioli
precession is orbitally unstable for sufficiently small e.

Second-order resonance 2% = 3. On the boundaries (3.6) of the PRD emanating from the point P,
the normal form of the Hamiltonian of perturbed motion, as in the case of first-order resonance, will
have the form (4.4); on both the left and right boundarics

25

ko = 0. ki = 3557313

(167065 - 74123./5)e® + 0(¢”) = 0.0083¢® + O(¢")

but = 1 on the left boundary and 8 = —1 on the right.
Hence, by the discussion in Section 4.1, it follows that for sufficiently small € the Grioli precession
will be orbitally stable on the left boundary of the PRD emanating from P and unstable on the right.

Third-order resonance 3 & = 5. The resonance curve is defined by Eq (4.12). On that curve the normal
form of the Hamiltonian is given by (4.7), with

_ 1270053 5 6y _ 5 6 _
0y = ————10976000@3 +0(e") = ~0.3659¢” + O("), By = 0

For sufficiently small €, incquality (4.8) holds, and this is therefore a case of orbital instability.

Fourth-order resonance 4). = 7. On the corresponding curve (4.11), the normal form of the Hamiltonian
(4.9) will have oy = 0, Byy = O(€"), and the quantity D of (4.6) is cxpressed as

2335 495

2y = 2
" 1568_2401m+0(5 ) = 0.3048 + O(g”)

Since inequality (4.10) holds for sufficiently small €. it follows that the Grioli precession is orbitally stable.

2. The case 6, = 1 — ¢~ (0 < € < 1). When £ = 0 the body is dynamically symmetric, and its mass
geometry (4 = B > () corresponds in Fig. 7 to the vertical segment P,P; of the boundary of the domain
of admissible values of the parameters 6, and 6,. If the parameters 68, and 6, do not belong to the curves
(4.13) and (4.14) cmanating from the points Py and P, of the segment P»P;, then for sufficiently small
£ there is no resonance of order up to and including four. The normalized Hamiltonian has the form
(4.5), and its cocfficients are evaluated using the formulae
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2 5 8. -6, +
A= JO +1+0(e7), ¢y = #+0(82)
20,67+ 1)
2 4 ) (4.18)
0.(62-2) , 20~ 1167 +2 X
o= —t T 40D, oy = T O

4 2
02+1),/6% + 1 402+ 1)

For D we obtain the expression

)

26°- 108" + 150] - 1402 -2 )
D= - + O0(g")

46,8+ 1)°

When € = 0 the number D does not vanish for any values of 8, in the interval P,P;.

The points Py and Py, divide this interval into three subintervals (P»Py), (PyP);) and (P} P3). Let 0,
and 9 (6, < 8)) denote the boundary points of any of these intervals. Then for small values of ¢, the
domain defined by the incqualities

8, +f'(e)<0,<8. - f'(&) (4.19)

where f* and f” arc certain continuous positive functions of € that vanish at £ = 0, contains no resonances
of order up to and including four, and D = 0. By the discussion in Section 4.1, the Grioli precession
will be orbitally stablc in the domain (4.19). This means that each of the three intervals (P-Py), (PyP))
and (£),P3) is adjacent to an orbital stability domain.

We will now consider the resonant cases. when the parameters ), and 8, belong to the curves (4.13)
and (4.14).

Third-order resonance 3k = 4. On the corresponding resonance curve (4.13) the normal form of the
Hamiltonian is (4.7), with B3, = 0 and

1

= To3a000-/0(3249715 - 1128212/7)e* + O(€”) = 0.6333¢" + O(e”)

U3

Since inequality (4.8) holds for sufficiently small €, this implies orbital instability.

tourth-order resonance 4A = 5, On the curve (4.14) the normalized Hamiltonian of perturbed motion
is (4.9), with oy, = 0. By, = O(e7), and

_ 2603

2, _ 2
= m+0(£ ) = 0.8677 + O(¢")

For small £ values, incquality (4.10) holds. and the Grioli precession is orbitally stable.

3. Arbitrary values of the parameters. For arbitrary values of the parameters 6, and 8, in the domain
of admissible values, the coefficients of the normal form of the Hamiltonian needed to investigate stability
were found by numerically. In accordance with the algorithms presented in [17, 21], this required the
integration of certain systems of ordinary differential equations with previously known initial conditions.
The computations were carried out for values of 8, not less than 0.01. The results will now be described
(scc also Fig. 7).

On the left boundary PyPs of the PRD emanating from the point P4, Grioli precession is orbitally
unstable everywhere except at the point P15(0.578, 057175), where the question of stability remains open.
On the right boundary P,P,, one also has instability, everywhere except at the point P3(0.65633, 0.444957),
where precession is orbitally stable.

The left boundary of the PRD emanating from the point P is divided by the point P;4(0.853, 0.604)
into two parts. On the part P7P, one has orbital stability, at the point P4 the question of stability remains
open, and at all other points investigated precession is unstable. The right boundary is also divided by
the point P5(0.87876, (.678) into two parts. Adjoining the point Py is a segment P7P, s of orbital instability,
at the point P< the question of stability remains open, and at all other points investigated one has orbital
stability.
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The parts of the resonance curves on which Grioli precession is orbitally unstable are shown in
Fig. 7 by solid lines, and the parts on which it is orbitally stable are shown by dash-dot lines.

On the third-order resonance curves therc is always orbital instability, except at the points
P(0.809339, 0.449) and P;5(0.831305, 0.336) on the curve 3A = 5 and the point P3(0.954319, 0.389)
on the curve 3A = 4, where there is orbital stability.

On the fourth-order resonance curve 44 = 7, unstable segments P4P,, and P>, P>, were observed.
At the boundary points of these segments P4(0.7221, 0.5905), P,,(0.7224, 0.5895), P-;(0.809, 0.332),
P55(0.892, 0.138) the question of stability remains open. At other points investigated the precession is
orbitally stable.

On the curve 44 = 5 there is an unstable segment P-3P,. At its boundary points P»3(0.97688, 0.5746)
and P»4(0.9767, 0.5717) the question of stability remains open. At other points of this curve that were
investigated, the precession is orbitally stable.

For values of the parameters 8, and 6, outside the PRD and not on the resonance curves of order
up to and including four, the Grioli precession is orbitally stable everywhere except possibly on the curve
D = 0, where the condition of the Arnol’d-Moser theorem breaks down. This curve consists of five
parts, shown in Fig. 7 as dashed curves: a part passing through the points P,5 and P),, the part connecting
the points Py and P14(0.83902, 0.16098), the parts P,,P; and P,sPy, and the loop-shaped part between
the curve 3A = 4 and the vertical 8, = 1.

Thus, the problem of the orbital stability of the Grioli precession has been solved for almost all
admissible values of the parameters in the domain 6, = 0.01; for the remaining six uninvestigated points
Piogk = 1,2, ..., 6) on the fourth-order resonance curves, and for the curve D = (), an analysis of
the stability requires a consideration of terms of order greater than four in the series expansion of the
Hamiltonian of perturbed motion.
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