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The motion of a rigid body about a fixed point in a uniform gravitational ficld is considered. The body is not dynamically symmetric. 
but its ccntrc of gravity is on the perpendicular. erected from the fixed point, to a circular section of the inertia ellipsoid. Grioli 

proved that a rigid body with such mass geometry may precess regularly about a non-vertical axis. The problem of the stability 
of this precwsion is solved. 0 2003 Elscvier Ltd. All rights reserved. 

In 1947, Grioli [l] made an unexpected discovery: a rigid body without dynamic symmetry, moving in 
a uniform gravitational field, may precess regularly about an axis other than the vertical axis. Until then, 
regular precession of a heavy rigid body had been known in the Euler and Lagrange cases, when the 
body is dynamically symmetric, and statements were sometimes made in the literature [2,3] to the effect 
that regular precession of a heavy rigid body about a non-vertical axis is impossible. 

At the present time, the problem of the existence of regular precession of a rigid body with one fixed 
point in a uniform gravitational field has been fully solved. Studies have shown [4-71 that only three 
types of regular precession exist: (1) precession of a dynamically symmetric body in the Euler case about 
an arbitrary axis of fixed direction passing through the fixed point; (2) regular precession about the 
vertical in the Lagrange case; (3) regular precession, discovered by Grioli, of a body that is not 
dynamically symmetric, about an axis inclined to the vertical. In all types of regular precession, the centre 
of gravity of the body lies on a perpendicular to a circular section of its inertia ellipsoid for the fixed 
point. A history of the discovery and of the study of rigid body precession may be found in [8-101. 

The problem of the stability of regular Grioli precession has proved to be very complex and, unlike 
precession in the classical Euler and Lagrange cases, still awaits a complete solution, though attempts 
have been made to investigate it [l l-141. 

Below we present new results on this topic, a brief summary was published in [ 1.51. 

I. THE MOTION OF A KIGID BODY IN THE CASE OF 
GRIOLI PRECESSION 

Consider the motion of a rigid body with one fixed point 0 in a uniform gravitational field. The weight 
of the body is mg and the distance from the centre of gravity to the fixed point is 1. Suppose the point 
of attachment is chosen is such a way as to satisfy the following conditions (Grioli’s conditions) 

x;m = z;JA-B, y; = 0, A>B>C (1.1) 
wherexA,yi, $, arc the coordinates of the centre of gravity G in the system of coordinates Ox’y’z’ formed 
by the principal axes of inertia of the body for the fixed point, A, B and C being the corresponding 
moments of inertia. Conditions (1.1) mean that the body does not possess dynamic symmetry, and its 
centre of gravity lies on a perpendicular, erected from the fixed point, to a circular section of the inertia 
ellipsoid (Fig. 1). 

Let OXYZ be a fixed system of coordinates whose OZ axis points directly upward, while the system 
Oxyz is rigidly attached to the body, its Oy axis coinciding with the principal axis of inertia @’ of the 
body for the point 0 corresponding to the median moment of inertia B, and its Oz axis passing through 
the centre of gravity of the body. The trihedron Oxyz is obtained by rotating the trihedron O.~‘y’z’ by 
an angle a about the @’ axis (Fig. 2a). where 

, 
xK - a = arctg ;b - arctg 
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Fig. I 

\-J (a) 0)) 
Fis. 1 

In the system of coordinates O.qz the matrix J of the inertia tensor and the unit vector yof the fixed 
vertical axis OZ are written as 

J, 0 -J,; YI 
J= 0 J, 0 ? Y= y2 

-J,, 0 J, Y3 

J,=J,=B. J,=A-B+C, J,;=-&A-@(B-C) 

The kinetic and potential energies of the body are given by 

T = 1/2J,(p2 + q2) + 1/2J2r2 - J,,pr, II = mgly, (1.2) 

wherep, q and r are the projections of the angular velocity vector or) of the body on the O.Y, @ and 0~ 
axes, respectively. 
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As generalized coordinates q,, ql. (1; defining the orientation of the trihcdron 01;~~ relative to the 
fixed system of coordinates we take the Euler angles cp, 8. v3 detincd in the usual way (Fig. 2b). Then 

p = qiy, +q2cosq,, q = q3YZ-Q2sinq,. r = g3y3+4, 

y, = sinq,sinq,. y: = sinq,cosq,, yi = Cosq, 
(1.3) 

As generalized momenta we take the dimcnsionlcss quantities/?, (i = I. 2, 3), defined by the equalities 

I iJT 
P, = &aq,’ i = 1.2,3 ( 1 .A) 

The kinetic energy T is evaluated by form&c ( 1.2) and ( 1 .j). and ,I is defined by the relations 

7 
n- = mgl 

(A-B+C),,lil,‘+I‘ 
I? = ;. b, = “Ji -8,)(8,-0,), b, = l-8,+8, 

where 8,, = B/A and 8, = C’.i,/l arc the dimcnsionleas parameters of the problem. The domain of their 
admissible values in the @,, 8, plant (0 < 8, < 8,, < I. 8,, + H, > I) is ;I right-angled triangle with vertices 
P,(‘h ‘h), P,( 1. l), Pj( 1, 0). 

If we now additionally take as indcpcndcnt variable T = 17(t + r,,). whcrc 1,) is an arbitrary constant, 
then, taking Eqx (I.?)-( 1.3) into con6rlcration, we obtain the following expression for the Hamiltonian 

(1.5) 

a ?(x) = e,(B,sin’qz + b,cos’qz) - bfcos’q, cos’qz + 28&, sinq, sinqzcosq2 

‘1110 = -2(hfsinq, cosq, cosq, + 8,b, cosq, sinq?)sinq? 

NIOI = -2(B~.cosq, + hf sin’q, cosq, + 0,b, sinq, sinq,) i 

a020 = (8, + bfcos’q,)sin’q, 

%I I = 2hfsinq,cosq, sinq, 

~002 = 8, + h;lsin’q, 

rI* = $/5$&osq: 

The following solution of the equations of motion corresponds to Grioli precession 

q, = f,(z) = - i + t- arctg(bsinz), p, = g,(7) = b,( 1 -bcosZ) ( 1 h) 

q2 = f2(t) = arccos 
bcosz bsinT 

,ib”+I’ 
p2 = R2(T) = 

Jrzzz 
(1 + 0, - bb,cosT) (1.7) 

where 

f3(T) = q,(0)+(2k+ I):-arctg=, if kX<Z<(k+ I)x 
JizT 

f3(mn) = q3(0) + mn, m = O,l,... 



8, 
P,I 1. I I 

,x > xl4 
\ 
L % 
P,(l. 0) 

In the Grioli precession, the axis of the body on which the centre of gravity is situated is an axis about 
which the body itself revolves, and the axis of precession is inclined to the vertical at an angle x = arctgh 
(Fig. 3). The axes of the moving and fixed axoids are at right angles to one another. The magnitudes 
of the angular velocity vectors of the body’s rotation about itself w, and its precession w2 are the same, 
both equalling II. The centre of gravity of the body moves in a circle whose centre lies on the axis of 
precession in a plane perpendicular to that axis. The motion of the body is periodic: in a time equal to 
the period 27titz the body returns to its initial orientation in absolute space, the angular velocity vector 
then taking its initial value. 

Figure 4 illustrates the dependence of the angle x on the body’s moments of inertia. The curve on 
which 2 = x/4 (part of a hyperbola) is shown as a dashed curve. It intersects the boundary P ,Pi at the 
point P(‘ic,. i/c,), and the vertical straight line 8,, = I is tangent to it at the point P?. In the domain x < 
rr,i4 the angle of rotation cp of the body about itself increases monotonically (.f, > 0). but in the domain 
x > x14 the quantity!, may vanish and the angle cp is not monotonic. Figure 5 shows the trajectories 
of solution ( I .6)-( 1.8) corresponding to Grioli prcccssion for different values of the inertia parameters 
of the body in the 8, cp plant. 

2. FORMULATION OF THE STABILITY PROBLEM. DERIVATION OF 
THE EQUATIONS OF PERTURBED MOTION 

The coordinate cl3 is cyclic. Replacing the momentum p3 in the Hamiltonian (1.5) by its constant value 
from the second expression (1.X). we obtain the Hamiltonian H(rl,, cl:, pt. p?; 8,,, 0,) of the reduced 
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system with two degrees of freedom. This system admits of a solution that is a 2rc-periodic function of 
r. given by Eqs (I .6) and ( I .7). 

We introduce perturbations Q, and I’,. defining them. as L~SKII, by 

Y, = .f‘,(r) + Q,, P, = K,(~)+P,, i = I,2 (2. I) 

Let Y(t) be the matrix of fundamental solutions of the system of equations linearized relative to Q,. 
P, (Y(0) = E. where E is the 4 x -1 identity matrix). It is found as a rule by numerical integration. The 
characteristic equation of the matrix Y(3) is reciprocal 

p4 -rr,p3+a,p’-u,p+ 1 = 0 (2.2) 

where LI, is the trace of the matrix Y(3) and LIP is the sum of all its 2 x 2 principal minors. 
Since the system of cqu;ition\ of motion M,ith-Hamiltonian H(r/,. L/,.J),,/I~; 8,,, O,.) is autonomous, the 

characteristic equation (2.2) has a root cclual to I. But since it is reciprocal, this root is multiple, of 
multiplicity at least two. Therefore. the coefficients of Eq. (2.2) satisfy the cyuation N? = ?(a, - 1) and 
it may be written in the form 

(pmmI).‘(&2ap+l) = 0, (I = u,/2-1 (2.3) 

The periodic motion ( 1 .h), ( I .7) is not isolated. It belongs to ;I family of periodic motions 

y, = F,(Q(h)t. h), p, = Gi(b~(h)r, h), r = nt+ro (r, = ?a()) (2.4) 

where /I is the constant 01‘ the integral H = /I = const. In the unperturbed motion (I.(,), (1.7) h = 
A,, = (0, + I)?. where 12(/r,,) = I. t/l2(/r,,),itl/z,, f 0. 

The equations of motion linearized with respect to (2, and P, admit of two types of solution, obtained 
by differentiating the functions y, undy, of the family (2.4) with respect to the arbitrary constant r,, and 
II. Solutions of the tirst type. ;IF;!&,,, &;,/&,, (i = I .2). are 2x-periodic functions of 7. (By Floquct’s 
theory of linear difl’crcntlal equations with periodic coefficients, this also implies the existence of the 
root p = I of the characteristic equation (X).) Solutions of the second type. dF,/&. Xi,/& (i = I, 2), 
have the structure \‘,(T) + TV,(~) (i = I. 2), where V,(T) and p,(z) are 2x-periodic functions of r. By 
Floquct’s theory. the presence 01‘ the term rp,(r) implies that the matrix Y(2x) is not diagonalizablc. 
Consequently [ IO], the periodic motion ( I .h), ( I .7) is unstable in the first approximation in Lyapunov’s 
sense. 

It will be unstable in Lyapuno\,‘\ scnw in the non-linear problem also. Indeed. let 

h = h*, O<lh*-hoj < I 

-To this wlue ofh thcrc correspond5 a periodic motion y,::,l~T of the family (2.4). WC will take this motion 
as the perturbed motion. Since Q(/I”) # Q(/I,,). it follows that as time passes the points with coordinates 
L/,(r). /j,(r) and c/j;:(r), [l;‘:(r) in the phase space 11~. y?, I>~. 17~ will retreat to a finite distance from one 
another, howc\,cr close their initial positions r/,(O). /I,(()) and r/~(O). 111’:(O). This implies instability in 
Lyapunov’s sense. 

Let LIS consider the orbital stability of the periodic motion (I .6). (1.7), that is, look for an answer to 
the following question: will the trajectories of perturbed motions remain for all r in a small ncighbourhood 
of the trajectory of unperturbed motion if their initial points are sufficiently close together? 

An algorithm was worked out in [ 171 to construct equations of perturbed motion in the problem of 
the orbital stability of periodic motions. Following the approach described in [ 171, we shall replace the 
four perturbations of the coordinates and momenta Q,. P, (i = I, 2) defined by (2.1) by three quantities 
$, rl, and 112, characterizing the deviation of the perturbed trajcctorics from the trajectory of unperturbed 
periodic motion ( I .h). ( I .7). To that end. WC transform variables in the system with Hamiltonian H(q,, 
4;. /I,. 11~: c3,,, 8, ). applying ;I transformation that is linear in kZ. q, and 11~ 

as defined by the formulae 

y, = f,(~l)+~,~(5~)52+(r,2(51)~l +‘i3(51)% 

p, = R,(~l)+n,+?,,(~l)~2+a,+~,~(5,)rll +~~+?3(51)772; i = It2 
(2.5) 
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wherei( b:(t) (i = 1, 2) define the unperturbed periodic motion (1.6), (1.7). The coefficients uri are 
2n-periodic functions of 5,. They are chosen in such a way that, in the new variables, the periodic motion 
we are investigating may bc expressed by the equalities 

5,(z) = t+5,(0)3 r\, = 52 = T)2 = 0 (2.6) 

and the transformation of the variables (2.5) is canonical and univalent. It has been shown [ 171 that 
the coefficients ai, must be evaluated from the formulae 

all = $e&e,f;-2( e,cj - e4cg + qc: - &)g;] 

e3 
aI2 = -d, a13 = b(cs.f; -2c,f;-e&) 

a 21 = b[esf; -e&+2( e,cs - e4c6 + clc: - c:c4)g;] 

e2 
a22 = x, $3 = j$2c6.fi - csf; + e6g;) 

(2.7) 

= :(2c,fi + e,g; + e,g;), c3 
a31 q2 = x, 033 = ;c- f; + csg; + %jg;, 

a41 = i(- 2c,f; - e,g; - e,g;), U42 = -2, a43 = i(J”i - 2C4g; - Cs&T;) 

where the prime dcnotcs differentiation with respect to c,, and we have put 

A = ~36 -c,f; +e~; -e2g; 
'I = C?CT - 2c,cs, e2 = c3cs-2c2c6, e3 = c2cs-2c3c4 

e4 = ci -4c,c4, es = c; - Jc,cg, e6 = c: -4c4c6 

(2.8) 

The transformation of the variables (2.5) involves six arbitrary constant parameters c,, c,, . . . , ~6. 
They must be chosen in such a way that the quantity A does not vanish for 0 s 51 s 2~. 

The Hamiltonian of the perturbed motion r({,. kz, ql. qz) is obtained from the Hamiltonian 
H(q,, cl,, y,, p2; O,,. 0,) by replacing the variables yI, ~1:. pI, p2 by their expressions in terms of 5,, kz, 
IJ,. + according to formulae (2.5). The function T can be expanded in series in powers of ql, c2 and 
772 

r = r,+I-,+I-,+... (2.9) 

where the constant h,, has been dropped. and FL is a form of dcgrcc k in rj, 1 “2, 52, Q. 

(2.10) 

Here x(5,) is a 2x-periodic function of c,, and ~p,,~ and w,,, are forms of degree r?l in c2 and qz whose 
coefficients are 2Tc-periodic functions of 5,. 

Orbital stability of the unperturbed periodic motion implies stability of the system with Hamiltonian 
(2.9) with respect to perturbations of q ,. & and r\?. 

3. ORBITAL STABILITY IN THE FIRST APPROXIMATION 

Let X(5,) be the matrix of fundamental solutions (X(0) = E. where E is the 2 x 2 identity matrix) of 
the linear system whose cocfficicnts arc ‘n-periodic functions of the independent variable 5, 
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where (pz(kz, +, 5,) is the quadratic part (with respect to {? and rlz) of the function I-? of (2.10). The 
characteristic equation of the matrix X(27c) is 

p2-2ap + 1 = 0, a = ‘12 (x,,(27c) +x,,(2n)) (3.2) 

The coefficient a may also be evaluated using the second equality of (2.3). 
If Ia 1 > I, Eq. (3.2) has one root. of absolute value greater than 1. There is parametric resonance, 

and, by Lyapunov’s theorem on stability in the first approximation [ 161, the Grioli precession will be 
orbitally unstable. 

The values of the parameters 9,,, 8, for which Ia 1 = 1 define the boundaries of the parametric reson- 
ance domains (PRDs). 

If Ia I < 1, the precession will be orbitally stable in the first approximation. In that case, the roots 
of Eq. (3.2) will be complex conjugates and their absolute value will both be equal to 1: p1 = exp(i2nh), 
pz = exp(-i2nh). where h is a real quantity defined by the equation 

cos2lch = a (3.3) 

Analytical and numerical investigations have shown that only two PRDs exist - the hatched domains 
in Fig. 6. They emanate from the points P,(d%. -\/j/3) and P7(2t’?/5, 2&/5) on the segment P1P2. In 
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small neighbourhoods of those points. when 8,, = 0, + E’. 0 < F 4 1 (that is, when the rigid body differs 
only slightly from a dynamically symmetric body oblatc along the axis of symmetry OX). analytical 
expressions have hecn obtained for the boundaries of the PRDs. 

The left boundary of the domain emanating from the point PJ ends at the point Ps(0.74057. 0.25043) 
of the segment PIP;. and the right boundary ends at the point PC,(().7565 2, 0.24348). For small values 
of E, the curve PIP, is defined by the equation 

0,> = d+L(267-73J3)i)F2+ 3 540 
,94~ooo(278042,'? - 141267)~~+ O(& = 

= 0.5774+ 0.2603E2+ 0.1751~" + O(E~) (3.4) 

and the curve PJP, by the equation 

0 h = 6+1(267-73&'+ 
3 540 

1 94~ooo(453542jr3 + 1 147983$+ o(E6) = 

= 0.5774 + 0.2603~'+ 0.9946~'+ O(E~) (3.5) 

Both boundarics of the PRD emanating from the point P7 tend. as 8, --f 0. to the corner point P3 of 
the domain of admissible parameter values. Near the point P7 the boundary curves are defined by the 
equations 

&o(405-373b)E2f&J3050- 1310hE"+ o(E4) = 

= 0.8944-0.4291~2~ 0.1374~~ + O(E') (3.6) 

whcrc the upper and lower signs relate to the Icft and right boundaries. rcspectivcly. 

4. NON-LINEAR ANALYSIS 

If the values of the parameters 8,, and 8, do not belong to the PRD, the first approximation is not enough 
for a rigorous solution of the problem of the orbital stability of the Grioli prcccssion. The non-linear 
equations of perturbed motion have to bc invcstigatcd. 

To solve the problem, formulae (2.5) and (2.7) wcrc first used to apply a canonical transformation of 
variables cl,. p, + k,, rl, (i = 1, 2) so 21s to express the solution corresponding to Grioli precession in the 
form (2.6). For values of 0,, and 8,. in the domain x < x/4 in Fig. 4, the parameters ci occurring in (2.5) 
and (2.7) were chosen as C, = C’ = c1 = ci = ch = 0. C: = 1. Then the transformation (2.5) becomes 

q, = f,({,L 42 = f2(51)+52 

PI = s,(5,)+ 
‘462 + VI -fh 

f; ' 
P2 = g2(51) + rl2 

On the curve y, = rc/4 and in the domain x > 7c/4 it was assumed that cl = C? = (‘1 = I’,, = 0, 
ci = <s = I. and the transformation (2.5) is written in the form 

q1 = f,(5,)-r)2, q2 = f2(51)+ 
f&rll +(f;+ilh 

f; +& 

&2+q1-(f;+g;bl2 

(4.2) 
PI = g,(5,)+ 

f; +& ' 

P? = g2(51) + rl2 

In order to solve the problem of orbital stability, after transforming via formulae (4. I) or (4.2) to 
the variables 5,. k2, TJ, and TJ ?, and obtaining a series representation (2.0) of the Hamiltonian of perturbed 
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motion, one must obtain the normal form of the Hamiltonian of perturbed motion and then use the 
Arnol’d-Moser theorem [18, lY] and the stability conditions for Hamiltonian systems in the presence 
of resonance [20,21]. The quadratic part of the Hamiltonian (2.9) was normalized by using the algorithms 
of [ 17, 211; terms of higher degrees (in the present case - of degrees 3 and 4) were normalized by the 
Deprit-Hori method ]20. 221. 

The presence or absence of resonance is important in stability analysis, the most essential resonances 
being those of order up to and including four, that is, the cases when the number mh, where a is defined 
by Eq. (3.3) and 111 = I, 2, 3. 4, is an integer. 

Suppose the parameters 8,, and 8, lit on the boundary of the stability domain in the linear 
approximation. Then ] II 1 = 1. When N = 1 one has first-order resonance (h is an integer), and when 
a = -1 one has second-order resonance (h is half an integer). Let us consider the general case, in which 
the matrix X(<,) of fundamental solutions of system (3. I), evaluated at 5, = 2x, is not diagonalizable. 
Using the canonical transformation 

we can reduce the Hamiltonian (2.9) to the following normal form [21] 

H = r, + V2 Fyi + k30x: + k10x2rl + kJOxi + k,,x$, + k,r: + 0, (4.4) 

where k, are constants and 6 is either I or -1, the actual value being determined during normalization 
of the linear system (3. I). The symbol O,, in (4.4) (and henceforth) denotes a series beginning with terms 
of degree at lcast n in /rl 1 I’?, x2 and yl. The coefficients of the series O5 in (4.4) are periodic functions 
of wI. The period is 27~ in first-order resonance and 47~ in second-order resonance. If the coefficient k3(, 
of the normal form (4.4) is not zero. or if it is zero but &kk40 < 0, the periodic motion is orbitally unstable, 
but if the coefficient k;,, in the normal form (4.4) is zero but &&, > 0. the periodic motion is orbitally 
stable [21]. 

Now suppose the parameters @, and 8, are in the interior of the stability domain in the first approximation. 
Then ]N ] < I. If N = -I/?, one has third-order resonance (3h is an integer), and if u = 0 one has fourth- 
order resonance (4h is an integer). 

We first consider the non-resonant case, in which a # -r/z and a # 0. Then, by applying the canonical 
transformation (4.3). which is k-periodic in wr. the Hamiltonian (2.9) may be reduced to the following 
normal form [ 171 

H = r,+hrz+C20r:+C,,r,r2+C02r:+05 (4.5) 

where, from now on. x2 = ?; 2r? sin w7,y7 = d2rl cos MI? and C,j arc constant coefficients. If the number 
defined by the equality 

D = c~&~-c,,~+c~~ (4.h) 

is not zero, the periodic motion will bc orbitally stable [ 18, 191. 
For third-order resonance 3h = k. WC: have the following normal form of the Hamiltonian of perturbed 

motion [ 171 

H = r, + Ar2 + rz~Z(a,,sin(3wz -- kw,) + ~30cos(3w2 - kw,)) + 0, (4.7) 

where ojl, and pj,, are constant coefficient. If 

40 + P:, f 0 (4.8) 

the periodic motion will be orbitally unstable [ZO]. 
For fourth-order resonance 4h = k. the normal form of the Hamiltonian of perturbed motion will 

be (171 

H = r, + hr, + czO$ + c11r,r2 + co24 + rz@,,sin(4w2 - kw,) + p40cos(4w2 - kw,)) + 0, (4.9) 

where oJCl and &,, are constant coefticicnts. If 

IDI ’ &, + Pi (4.10) 
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then the periodic motion is orbitally stable [20]. But if the rcvcrsc inequality holds, the motion is orbitally 
unstable. 

The quantity h is not uniquely dcfincd by Eq. (3.3). The indeterminacy is eliminated (taking into account 
the continuity of the characteristic exponents) by consider-in g the limiting case f3,, = 8,., for which the 
linearized equations ofpcrturbed motion have constant coefficients. and h = dm is the frequency 
of small oscillations in the ncighhourhooc of the tr:tjcctory of unpcrturbcd motion. 

In the curvilinear triangle f’,l’,l>i in Fig. 6, ii = 7 + (1x) ‘. in the triangle P,f’zP:, h = I + (2~)~‘. 
and in the quadrilateral I-‘J)J’;P,,. h = 2 - (2x)-’ al-cc04 0. . 

On the curves I-‘,Pi and I’1f’11 there is first-or&r resonance h = 2, and on the boundaries of the PRD 
emanating from the point I’?. second-order resonance 3h = 3. In the interior of the stability domains 
in the first approximation thcrc arc two third-order rcsonancc curvc~ (3h = 5 and 3h = 4) and two 
fourth-order rcsonancc cur\cs (11, = 7 and 4)L = 5). They begin (see Fig. 6) at the points Ps(3/4, 3/4), 
P,,( I, ??/3) and P,,,(3~?3/33. 3\‘3.3Ki), P, ,( I, .3/A). respectively. As 8,. + 0 these curves approach the 
point P:. 

Near the straight line Hi, = 8,. M llcn CI,, = 8, + F’. the resonance CUIWS 3h = 7 and 3h = 5 are defined 
by equations 

4 0 =-J33+ I> 33 ( 
$o-g$3y+u(E4) = 

= 0.6963 + 0.1254~’ + O(E’) (curve 4h = 7) (4.1 I) 

0,2+ 4747 2 4407170511151 = 
4 186368&+ 4741058789376 

E 4 + O(2) 

= 0.75 + 0.0255~’ + 0.9296~~ + O(& (cuwe 3h = 5) (4.12) 

If 8,, = I ~ r’. 0 < t‘ ~5 I (that IS. the rigid body differs slightly from a dynamically symmetric body 
prolate along the symmetry axis 0;‘). the equations of the resonance curves 3h = 4 and 4h = 5 will be 

= 0.8819- 2.7627~‘- 15.2004~~ + O(& (ewe 3h = 4) (4.13) 

8 = 3 11809141307 = 
’ 4 

20401E2- 
4536 216040608 

& 4 +0(&p 

= 0.75 - 4.4976~’ - 54.6617~~ + O(E’) (cunc 4h = 5) (4.14) 

We will now dcscribc the results 01‘ analytical and numerical investigation of the orbital stability of the 
Crioli prcccssion for valuex of the parameters 8,, and 0,. not in the PRD. These results are illustrated 
graphically in Fig. 7. 

We will first consider the two al’orcmentioncd casts of ;I body that is nearly dynamically symmetric. 
In these cases the orbital stability problem for the Grioli precession can bc investigated by analytical 
means. This has been done using the MAPLE VII system. 

I. T/w CI/.SC 0,, = 8, + E’ (0 < F ~3 1). In the limit when E = 0, the body is dynamically symmetric and 
its mass gcomctry (,,I > B = C’) corresponds to the segment P,P, of the boundary of the domain of 
admissible values of the parameters 8,, and 0,. For points (Cl,,, 0,) not on one of the resonance curves 
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emanating from the points P,. P 1,~. P+ /‘7 of the segment PIP, the Hamiltonian of perturbed motion 
has the normal form (4.5). The following cxpresaions may he ohtaincd for the coefficients of the normal 
form 

r I$+ 1 h=-?.--.- c&8,+ 1 
8, + O(E2), czo = 

2(8,2+ 1) 
+ O(E2) 

CII = 
1-20; 

-- + O(E2), C()? = 
2e;- lIEI;+ 

0,(8;?,+ l,&+ 1 48,( 0% + I)* 
+ O(&?) 

(4.15) 

The quantity (4.6) will ITC 

D= 
20;+ 14e;- 15e;+ log-2 

4830; + 1): 
+ O(2) (4.16) 

When F = 0 the number I) uni$hes only once in the intenal PIP2 - at the point P2,(0.S6776. 0.56776). 
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The interval PIP, is divided by the points Pzi, P,, P,,,, P,, P, into six intervals. Suppose the values 0: 
and Cl:;* (0:” < 9,:i;“) correspond to the boundary points of one of these intervals. Then for small E, if 

f3f + f*(E) < 8, < e,** -f**(E) (4.17) 

where ,f” andf”” arc certain continuous positive functions of E that vanish when E = 0, there will bc 
no resonances of order up to and including four, and the number D will not vanish. According to the 
discussion in Section 4. I, this implies that, if & is sufficiently small and inequality (4.17) holds, the Grioli 
precession is orbitally stable. In other words, for small values of c’, each of the aforementioned six 
subintervals of the interval PIP2 is adjacent to an orbital stability domain. 

We will now consider the resonant cases. 

First-order resonmcc h = 2. On the curves P,P, and P4P, defined for small values of F Eqs (3.4) and 
(3.5). respectively. the normal form of the Hamiltonian of pcrturbcd motion may be written as (4.4). 
It can be shown that on the curve P4Pi the normal form (4.4) will have 6 = 1, li?,, = 0, 

k 40 ;;;;;;E; - :;;;;;;;&) ~~~ + O(E’~) = - 0.3688~‘~ + o(E13) 

while on the curve P4Pc, WC: have 6 = -I, and 

k 30 = 4J12 ;;7y;;o - ;; ;;;;; A) EGO + O(E’*) = - 2.0119~” + O(E’*) 

Therefore, on both the left and right boundaries of the PRD emanating from the point P4, the Grioli 
precession is orbitally unstable for sufhciently small E. 

Secodorder rcwmtzcc 2h = 3. On the boundaries (3.6) of the PRD emanating from the point P,, 
the normal form of the Hamiltonian of perturbed motion, as in the case of first-order resonance, will 
have the form (4.4); on both the left and right boundaries 

k,, = 0, k,,, = 39;;312(167065-74123&)~6+0(E7) = O.O083~~+0(E~) 

but 6 = 1 on the left boundary and 6 = -1 on the right. 
Hence. by the discussion in Section 4. I, it follows that for sufficiently small E the Grioli precession 

will be orbitally stable on the left boundary of the PRD emanating from P7 and unstable on the right. 

Tl?ir~i-orrlerr~.\onur?~~ 3 h = 5. The resonance curve is defined by Eq (4.12). On that curve the normal 
form of the Hamiltonian is given by (4.7), with 

CL ’ 270053 &k5 + O(E~) = - 0.3659~~ + O(E~), 3o = -10976000 
pso = 0 

For sufficiently small F. inequality (3.8) holds, and this is therefore a case of orbital instability. 

Fourtlz-or&r twmmzw 4h = 7. On the corresponding curve (4.1 I), the normal form of the Hamiltonian 
(4.9) will have Q, = 0, pJC, = O(Y). and the quantity D of (4.6) is expressed as 

D = 2335 495 
1568 -=&? + O(E~) = 0.3048 + O(E~) 

Since inequality (4. IO) holds for sufficiently small E, it follows that the Grioli precession is orbitally stable. 

2. The CLISL 8,, = I - I’ (0 < t: +? I). When E = 0 the body is dynamically symmetric, and its mass 
geometry (A = B > C) corresponds in Fig. 7 to the vertical segment PIP3 of the boundary of the domain 
of admissible values of the parameters @, and 8,.. If the parameters 8,, and 8,. do not belong to the curves 
(4.13) and (4.14) emanating from the points P4 and P, , of the segment P2P3, then for sufficiently small 
E there is no resonance of order up to and including four. The normalized Hamiltonian has the form 
(4.5). and its cocffkicnts are evaluated using the formulae 
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A = &z + O(E2), ef - 0,. + 1 
c20 = 

20,(0,2 + 1) 
+ O(E2) 

0,( ef - 2) 
c,, = + O(E2), co2 = 

2ez- 118,+2 

(0,2+ l,.J$z 4(0,2 + 1)2 
+ O(E2) 

(4.18) 

For II wc obtain the expression 

D=- 
2e; - 1oe; + 15ef - 14e,‘- 2 

48,( ef + 1 )2 
+ O(E2) 

When E = C) the number LI does not vanish for any values of 0,. in the interval P2P,. 
The points Pi, and PII divide this interval into three subintervals (P,Pu), (P$, ,) and (P, ,Pj). Let 0:. 

and @ii (0: < 0::) denote the boundary points of any of these intervals. Then for small values of E, the 
domain defined by the inequalities 

0: + f’(E) < 8, < el’ -f”(E) (4.19) 

wheref” andf’” arc certain continuous positive functions of E that vanish at E = 0, contains no resonances 
of order up to and including four, and D # 0. By the discussion in Section 4.1, the Grioli precession 
will be orbitally stable in the domain (4.19). This means that each of the three intervals (P2Pcj), (P$, ,) 
and (P, ,P,,) is adjacent to an orbital stability domain. 

We will now consider the resonant casts. when the parameters Q,, and 8,. belong to the curves (4.13) 
and (4.14). 

7Ii~/-o&r- I~SOIZNIICC’ 3h = 4. On the corresponding resonance curve (4.13) the normal form of the 
Hamiltonian is (4.7). with pi,, = 0 and 

a.30 = 1 02~ooo~(3249715 - 1 128212fi)~~ + O$) = 0.6333~~ + O(d) 

Since inequality (4.8) holds for sufficiently small E. this implies orbital instability. 

~+M?/I-~I& ~~~.YO~~IUKY 3h = 5; On the curve (4.14) the normalized Hamiltonian of perturbed motion 
is (4.9). with Q,, = 0. pA(, = O(c). and 

D = go+O(~2) = 0.8677+0(~~) 

I:or small F values. inequality (4. IO) holds. and the Grioli prcccssion is orbitally stable. 

3. A~hitr~g~ IW~LWS of’thc pamt?wt~r:s. For arbitrary values of the parameters 0(, and 8,. in the domain 
of admissible values, the cocfticients of the normal form of the Hamiltonian needed to investigate stability 
were found by numerically. In accordance with the algorithms presented in [ 17, 211, this required the 
integration of certain systems of ordinary differential equations with previously known initial conditions. 
The computations were carried out for values of 8,. not less than 0.01. The results will now be described 
(SW also Fig. 7). 

On the left boundary l’JL’.< of the PRD emanating from the point PJ, Grioli precession is orbitally 
unstable cvcrywhere except at the point P,,(O.578,057175), where the question of stability remains open. 
On the right boundary P<P,, one also has instability. everywhere except at the point PIj(0.6Sh35, 0.444957), 
where precession is orbitally stable. 

The left boundary of’thc PRD emanating from the point P, is divided by the point P14(0.853, 0.604) 
into two parts. On the part P7PIJ one has orbital stability, at the point PI4 the question of stability remains 
open, and at all other points investigated precession is unstable. The right boundary is also divided by 
the point P,,(O.X7X76,0.67X) into two parts. Adjoining the point P, is a segment P7P15 of orbital instability, 
at the point PIi the question of stability remains open. and at all other points investigated one has orbital 
stabilitv. 
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The parts of the resonance curves on which Grioli precession is orbitally unstable are shown in 
Fig. 7 by solid lines. and the parts on which it is orbitally stable are shown by dash-dot lines. 

On the third-order resonance curves there is always orbital instability, except at the points 
P,,(O.809339, 0.449) and P,,(tl.831305, 0.336) on the curve 31 = 5 and the point P ,,(0.954319, 0.389) 
on the curve 3h = 4, where there is orbital stability. 

On the fourth-order resonance curve 4h = 7, unstable segments P,,Q2,, and Pz,P2z were observed. 
At the boundary points of these segments P,,(O.7221, 0.5905), P20(0.7224, 0.5895). P,,(O.X09, 0.332), 
P,,(O.X92. 0.138) the question of stability remains open. At other points investigated the precession is 
orbitally stable. 

On the curve 4h = 5 there is an unstable segment P21’ 2J. At its boundary points P23(0.97688, 0.5746) 
and Pzd(0.97h7, 0.5717) the question of stability remains open. At other points of this curve that were 
investigated. the precession is orbitally stable. 

For values of the parameters El,, and 8, outside the PRD and not on the resonance curves of order 
up to and including four, the Grioli precession is orbitally stable everywhere except possibly on the curve 
D = 0, where the condition of the Arnol’d-Moser theorem breaks down. This curve consists of five 
parts, shown in Fig. 7 as dashed curves: a part passing through the points Pzj and Plz, the part connecting 
the points PX and P,,(O.83902,0.16098), the parts P,,P; and PIsPu. and the loop-shaped part between 
the curve 3h = 4 and the vertical 8,, = I. 

Thus, the problem of the orbital stability of the Grioli precession has been solved for almost all 
admissible values of the parameters in the domain Cl,, s 0.0 1: for the remaining six uninvestigated points 
PX+,$+(k = I, 2, . . . , 6) on the fourth-order resonance curves, and for the curve D = 0, an analysis of 
the stability requires a consideration of terms of order greater than four in the series expansion of the 
Hamiltonian of perturbed motion. 
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